Just a quick post that kills some questions from the previous post, and a report on just an overall wonderful REU project summer.
So let me start by the following: myself, and then Papadakis and Petrotou, and then us three jointly, proved the Lefschetz property for triangulated spheres (characteristic two in the case of Papadakis and Petrotou). This may be an unfamiliar word for someone not from algebraic geometry, but essentially, it is a property stating that Poincaré duality in certain manifolds coming from algebraic geometry (for instance, smooth projective varieties) is realized in a concrete way. Now you may think combinatorial Hodge theory à la Rota conjecture I proved with June and Eric, or positivity of Kazhdan-Lustig polynomials established by Elias and Williamson, this is much better. Because while those arguments relied on a known combinatorial trick by McMullen/de Cataldo-Migliorini, this one used an entirely new idea. First, let me state the theorem, without getting too technical:
We proved, given a triangulated sphere of dimension
, the face ring (in arbitrary characteristic) permits an Artinian reduction and contains a linear element
so that
is an isomorphism.
Continue reading








